Abstract

Amyloid-β1-42 (Aβ42) peptide aggregate formation in the brain plays a crucial role in the onset and progression of Alzheimer's disease. According to published research, the Aβ monomer's amino acid residues KLVFF (16-20) self-associate to create antiparallel β-sheet fibrils. Small compounds can prevent self-assembly and destroy Aβ fibrils by attaching to the Aβ16-20 regions of Aβ42. To enhance biological characteristics and binding affinity to the amyloid beta peptide, β-sheet breaker small molecules can be developed and modified with various scaffolds. In the current study, a novel series of 2,3-disubstitutedbenzofuran derivatives was designed and created by fusing the benzofuran core of a known iron chelator, neuroprotective, and neurorestorative agent, like VK-28, with a motif found in the structure of a known muscarinic inhibitor and amyloid binding agent, like SKF-64346. Measurements of the binding affinity and in vitro aggregation inhibition of the Aβ42 peptide were made using the thioflavin T (ThT) test. Using AutoDock 4.2 software, molecular docking studies of the synthesized compounds were performed on the monomer and fibril structures of amyloid beta peptide. The compounds 8a-8g exhibited strong binding energy and affinity to Aβ fibrils as well as a 50%-67% reduction of the growth of Aβ aggregation. Finally, the positive traits of our recently synthesized compounds make them excellent candidates for additional in vivo testing as a "β-sheet breaking agent."

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call