Abstract

A new nanoreactor type structure composed of hollow mesoporous silica spheres and CuO nanoparticles loaded inside the interior cavity of spheres has been designed and successfully prepared. The synthesis method is proceed in a four step procedure by using carbon spheres as the hard template together with a coating of tetraethyl orthosilicate (TEOS) and cetyltrimethyl ammonium bromide (CTAB) mixture. The obtained nanoreactors were characterized with FE-SEM, elemental mapping, TEM, XRD, BET, ICP and TPR analysis. The CO2 fixation reaction is applied to evaluate the catalytic performance of the synthesized CuO@SiO2 multi-yolk@shell catalyst. This catalyst exhibits superior activity in CO2 fixation reactions with 96% yield in 4h at low pressure. The catalyst demonstrates superb mechanical stability, high activity and is recovered for at least six times without loss of activity in CO2 fixation reaction, showing that this type of nanoreactor could be applied as a promising material in advanced catalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call