Abstract
A developing therapy of cystic fibrosis caused by the ΔF508 mutation in CFTR employs correction of defective CFTR chloride channel gating by a ‘potentiator’ and of defective CFTR protein folding by a ‘corrector’. Based on SAR data for phenylglycine-type potentiators and bithiazole correctors, we designed a hybrid molecule incorporating an enzymatic hydrolysable linker to deliver the potentiator ( PG01) fragment 2 and the corrector ( Corr- 4a) fragment 13. The hybrid molecule 14 contained PG01-OH and Corr-4a–linker–CO 2H moieties, linked with an ethylene glycol spacer through an ester bond. The potentiator 2 and corrector 13 fragments (after cleavage) had low micromolar potency for restoration of ΔF508-CFTR channel gating and cellular processing, respectively. Cleavage of hybrid molecule 14 by intestinal enzymes under physiological conditions produced the active potentiator 2 and corrector fragments 13, providing proof-of-concept for small-molecule potentiator–corrector hybrids as a single drug therapy for CF caused by the ΔF508 mutation.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have