Abstract

The design and simulation results of temperature-insensitive arrayed waveguide gratings based on silicon nanowires are presented. The temperature dependent wavelength shift is minimized by using negative thermo-optic coefficient material SU-8 as the upper-cladding. Simulation results show that by using an appropriate thickness and width of the waveguide, quasi-athermal operation can be achieved. For temperature varying from 0°C to 80°C, the TD-CWS can be controlled down to 0.036nm with little polarization dependence for 272nm×253nm waveguide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call