Abstract
This paper presents a novel ultrasonic transducer which can be used as a liquid ejector to release drug. The ultrasonic transducer is based on the design of a flextensional transducer, which is composed of interdigital piezoelectric rings and a vibration membrane. The device works at an axisymmetric resonant mode to produce maximum amplitude at the center of the vibration membrane in axial direction. For the usage of multi piezoelectric rings, the flexural plate waves can be generated by applying two out-of-phase signals. The power consumption is of primary importance in the design of this device and the usage of single-ring or multi-ring piezoelectric material instead of bulk piezo material can therefore reduce the power consumption. An optimum working frequency, at which least power is required by the device, can be found by the piezoelectric, coupled field capability of the ANSYS/Multiphysics product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.