Abstract

The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call