Abstract
This paper presents a new micromachined z-axis accelerometer as well as a new method to sense the out-of-plane displacement capacitively via comb finger arrays. The new design built the z-accelerometer using eight folded beam suspension to minimize the off axis sensitivities in both the x- and y- directions. The proposed method implements the sensing electrode as a comb finger arrays surrounding the sensor. This method enables the realization of the sensor by bulk micromachining process, increases the sense capacitance and reduces the off-axis sensitivity. This process allows building the micromachined accelerometer with large inertial mass. This work introduces the design and simulation for this accelerometer. The introduced method results in a high sense capacitance as well as high sensitivity. The simulated sense capacitance is 19.6627 pF. The sensor sensitivity is 2.037 μm/g with a very small total noise equivalent acceleration of 3.096 μg/$$ \sqrt {Hz} $$.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have