Abstract

Results of the project ‘ODALINE’ (OLED Devices Application in Luminaires for Interior and Exterior lighting) are presented. A team of academic and industrial partners worked together to design and manufacture a family of OLED luminaires. The project went through the following phases: i) analysis of the state-of-the-art of OLED technology; ii) identification of scenarios and application fields for OLED-based lighting systems and definition of requirements and performances expected for each scenario; iii) definition of the concept of new OLED lighting systems and development of their preliminary design; iv) executive design and manufacturing of some prototypes. After the identification of the most suitable OLED unit and of the application scenarios, the concept of the new luminaires was conceived: the luminaires rely on a suitable aggregation of a base module (consisting of an array of 6 OLED units, measuring 30 cm ∗ 20 cm) to provide systems with enhanced properties in terms of high efficiency, high quality light and flexibility as the luminaires can be combined to respond to different lighting tasks for indoor environmental applications. Final output of the research project was the manufacturing of three prototypes: a suspended luminaire (6 basic modules), a free-standing luminaire (4 basic modules) and a task lighting luminaire (1 module). The power supply system, consistently with the general concept, was developed for a single module rather than for the whole luminaire. Its architecture was conceived to allow the control of the luminaire (switching on/off, dimming) through the DALI digital protocol. Furthermore, some secondary optics were conceived and designed to concentrate the Lambertian light output and to increase the utilization factor of the flux.

Highlights

  • OLED (Organic Light Emitting Diode) is a flat light emitting technology, made by placing a series of organic thin films between two conductors

  • This paper describes the results from the ODALINE project: this was aimed at designing and manufacturing a family of prototypes of OLED luminaires through a suitable, effective and modular aggregation of a base module

  • Beside the characterization of the OLED units, the market research was addressed towards existing OLED luminaires: in this regard, a substantial lack of families of products able to meet different requirements for indoor purposes through coordinated, flexible and modular solutions was observed ii) identification of scenarios and application fields for OLED-based lighting systems and definition of the corresponding required performances: based on performances of OLED units measured in the previous stage, an analysis of possible scenarios for which OLED luminaires could be suitable was carried out

Read more

Summary

Introduction

OLED (Organic Light Emitting Diode) is a flat light emitting technology, made by placing a series of organic thin films between two conductors. Through electron–hole recombination, a high-energy molecular state is formed (called exciton), which behaves like a single molecule with high energy and generates light after an exciton lifetime period. Organic stack materials can be polymeric (POLED) or Pellegrino et al Journal of Solid State Lighting (2015) 2:6 small molecule (SMOLED) materials. As pointed out in a study from the US Department of Energy [3], “at present, most high performance lighting panels employ small molecule organics deposited using vapor deposition techniques. Polymer materials have not yet demonstrated the high efficiency and lifetime that is achieved in small molecules, but are being explored because they work well with flexible substrates, can be aligned to aid in light extraction, and may potentially lead to lower deposition costs as they are more amenable to solution processing”

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call