Abstract
The intrinsic negative Poisson’s ratio effect in 2-dimensional nanomaterials have attracted a lot of research interests due to its superior mechanical properties, and new mechanisms have emerged in the nanoscale. In this paper, we designed a novel graphyne-like two-dimensional carbon nanostructure with a “butterfly” shape (GL-2D-1) and its configuration isomer with a “herring-bone” form (GL-2D-2) by means of density functional theoretical calculation and predicted their in-plane negative Poisson’s ratio effect and other mechanical properties. Both GL-2D-1 and GL-2D-2 present a significant negative Poisson’s ratio effect under different specific strains conditions. By contrast, GL-2D-2 presents a much stronger negative Poisson’s ratio effect and mechanical stability than does GL-2D-1. It is hoped that this work could be a useful structural design strategy for the development of the 2D carbon nanostructure with the intrinsic negative Poisson’s ratio.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have