Abstract

Abstract This paper developed a horizontal axis micro-hydrokinetic river turbine (HAMHRT) technology for local renewable energy applications. Firstly, a hydrofoil shape was selected, and the hydrodynamic and cavitation characteristics of the hydrofoils were analyzed, then the chord length and twist angle for different blade location were optimal, and finally a 2 m diameter with 3-bladed HAMHRT was designed. Then, the numerical computational model of a hydrodynamic analysis for the prototype HAMHRT was carried out to determine force distributions along the blade under normal and extreme operating conditions, including the non-designed conditions, different tip speed ratios as well as the different pitch angles. The rotor has a maximum efficiency of 25.2% at the river current speed of 0.8 m/s, pitch angle of 4° and TSR of 6. It is ensured that the rotor performance does not deteriorate in a relative large scope even if the current speed changes or if the TSR deviates from the design values. Finally, the unsteady behaviors of hydrodynamics of this HAMHRT were analyzed farther. From the output performance of this turbine, the designed rotor was found to have stable power output and good efficiency at current speeding conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.