Abstract
Photon counting lidar has an ultra-high sensitivity which can be hundreds even thousands of times higher than the linear detection lidar. It can significantly increase the system’s capability of detection rang and imaging density, saving size and power consumings in airborne or space-borne applications. Based on Geiger-mode Si avalanche photodiodes (Si-APD), a prototype photon counting lidar which used 8 APDs coupled with a 1×8-pixel fiber array has been made in June, 2011. The experiments with static objects showed that the photon counting lidar could operate in strong solar background with 0.04 receiving photoelectrons on average. Limited by less counting times in moving platforms, the probability of detection and the 3D imaging density would be lower than that in static platforms. In this paper, a latest fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system is introduced. The correlation range receiver algorithm of photon counting 3D imaging is improved for airborne signal photon events extraction and noise filter. The 3D imaging experiments in the helicopter shows that the false alarm rate is less than 6×10 -7 , and the correct rate is better than 99.9% with 4 received photoelectrons and 0.7MHz system noise on average.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have