Abstract

Abstract In this paper, experimental work has been presented to study the novel design of a solar crop dryer that includes an inverted absorber perforate type collector with forced airflow. A novel design configuration was constructed and tested in the eastern Algeria climate (El Oued city) for drying potatoes. We aimed to present a test of the thermal performance of the novel dryer and use only clean energy sources for evaluating the drying efficiency. Under real climatic conditions, the experimental test indicated that the average air temperature of the drying chamber is 50 °C, and the time required for drying potatoes starting at the initial moisture content (MC) of 84.17% until the final MC of 12.5% is 6h. The highest specific moisture extraction rate value was obtained as 1.074 g water/kWh. The drying efficiencies ranged from 20.37% to 34.01%, whereas the exergy efficiency ranged from 58.48% to 93.22%. The payback period was estimated as 1.39 years. The proposed novel dryer will dry potatoes free of cost for almost its entire life period, and about $13.92 can be saved. Compared with electric oven drying, the novel one has the following advantages: the cost of electricity saving and avoiding penalty tax for CO2 emission were $11.69 and $2.235, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.