Abstract
ABSTRACT A soft robot hand with fingertip haptic feedback for teleoperation is proposed to perform complex tasks and ensure safe and friendly human-machine interaction. This robot hand can perform finger flexion/extension and abduction/adduction motions. A data glove is used to collect the hand joint angle data of the operator. Flexion sensors are embedded in the soft robot hand to monitor the bending angles of the actuators. Pressure sensors on the fingertips of the robot hand collect contact force data, and haptic feedback actuators located on the fingertips of the operator display the contact force to the operator. Characterization tests and teleoperation performance tests involving human participants are performed to prove the feasibility of the soft robot hand. The soft robot hand prototype satisfies the output force requirements and can meet 96.86% of the design requirements of the joint angles. The soft robot hand can be teleoperated to perform nine commonly used motions in daily operational tasks. The success rates of fingertip force discrimination, grasp, and pinch ability experiment are 100%, 95.00%, and 98.33%, respectively. The results of the experiment suggest that the soft robot hand with fingertip haptic feedback can perform complex tasks in teleoperation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.