Abstract

This paper introduces compact Printed Ridge Gap Waveguide (PRGW) phase shifters tailored for millimeter-wave applications, with a focus on achieving wide operating bandwidth, and improved matching and phase balance compared to single-layer technology. This study proposes a unique approach to achieve the required phase shift in PRGW technology, which has not been previously explored. This study also introduces a novel analytical approach to calculate the cutoff frequency and propagation constant of the PRGW structure, a method not previously addressed. Furthermore, the utilization of multi-layer PRGW technology enables the realization of multi-layer beamforming networks without crossing, thereby supporting wideband operation in a compact size. The proposed design procedure enables the realization of various phase shift values ranging from 0∘ to 135∘ over a broad frequency bandwidth centered at 30 GHz. A 45-degree phase shifter is fabricated and tested, demonstrating a 10 GHz bandwidth (approximately 33% fractional bandwidth) from 25 GHz to 35 GHz. Throughout the operating bandwidth, the phase balance remains within 45 ± 5∘, with a deep matching level of -20 dB. The proposed phase shifter exhibits desirable characteristics, such as compactness, low loss, and low dispersion, making it a suitable choice for millimeter-wave applications, including beyond 5G (B5G) and 6G wireless communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.