Abstract

Abstract In this paper, a broadband, low insertion loss, and compact folded substrate integrated waveguide (FSIW) phase shifter is proposed for the first time. By loading the complementary split-ring resonators (CSRRs) on the middle metal layer of the FSIW, a closed-type slow-wave transmission line (TL) is obtained, which can provide a wideband phase shift (39%) compared with the equal-length fast-wave one. The enclosed structure of the CSRR-loaded FSIW prevents the CSRRs from radiation as suffered in the previous reported CSRR-loaded TLs, resulting in a low insertion loss. This feature greatly reduces the amplitude imbalance between the main line and the reference line of the phase shifter. In addition, no transition structure is required between the FSIWs with and without CSRRs for broadband impedance matching, which makes the phase shifter more compact and easier to integrate with other FSIW devices. To validate the performance of the proposed phase shifter and to illustrate its ease integration, a novel FSIW 180° directional coupler that consists of an FSIW 90° coupler and an FSIW 90° phase shifter is designed, fabricated, and measured. The measured results agree well with the simulated data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call