Abstract

Recent advancements in wireless communication systems utilize miniaturized devices based on microelectromechanical system technology for present and future 5G wireless applications. Nowadays, RF devices are utilizing frequencies up to 30 GHz with substantial signal propagation that leads to a slow data rate. On the other hand, there is a huge spectrum available in the millimeter-wave frequency range of 30–300 GHz. The millimeter-wave spectrum is attractive for the development of smart systems based on 5G technology. In this paper, a low-pull-in-voltage capacitive type RF MEMS switch is proposed to operate at frequencies above 30 GHz. The switch is proposed with a new iterative meandering technique where the span length of each section in the meanders differs relative to the first section. A low pull-in voltage of 1.8 V is achieved with a large capacitance ratio of 63. The switch exhibits low insertion loss of −0.24 dB at 41 GHz and possesses high isolation of −46.7 dB at 38 GHz. The design is validated by comparing the theoretical and simulated results, and the switch can be efficiently utilized for millimeter-wave applications.

Highlights

  • The millimetre wave spectrum is attractive for development of smart systems based on 5G technology

  • A low pull – in voltage capacitive type RF MEMS switch is proposed to operate at the frequencies above 30 GHz

  • The switch is proposed with new iterative meandering technique where span length of each section in meanders differs and dependable with first section

Read more

Summary

Introduction

P. Ashok Kumar Koneru Lakshmaiah Education Foundation Girija Sravani National Institute of Technology Silchar

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.