Abstract

Currently, the application of electromagnetic dampers in structural vibration control and energy harvesting has become increasingly widespread. The optimization research of electromagnetic dampers in building design has also received more attention. Previous studies on vibration control of building structures with electromagnetic dampers have been conducted under fixed foundations, neglecting the effect of soil-structure interaction on building structures with electromagnetic dampers. The main contribution of this paper is to fill the research gap in the study of building structural vibration control with electromagnetic dampers considering soil-structure interaction. An effective design and parameter optimization method for building structures with both soil-structure interaction and electromagnetic energy harvesting is explored. The soil-structure interaction is taken into account, and the building model with electromagnetic dampers is improved to form a coupled vibration reduction system with both structural vibration control and energy harvesting functions. The dynamic equations of the system with both structural vibration control and energy harvesting are derived and then optimized using the H2 norm criterion and Monte Carlo-mode search method. A single-layer building structure is used as an example to study the influence of soil-structure interaction on building structures equipped with electromagnetic dampers under strong earthquake action. The dynamic response and energy harvesting of building structures under earthquake action considering soil-structure interaction are analyzed and evaluated. The results show that the influence of soil-structure interaction on building structures equipped with electromagnetic dampers needs to be considered. As the soil density decreases, the dynamic response of the building structure under earthquake action becomes larger using the electromagnetic damper system. Compared to the use of fixed foundations, the energy harvesting effect of building structures with electromagnetic dampers is weakened when considering soil-structure interactions.Definition:

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.