Abstract

Lattice structure is more and more widely used in engineering by replacing solid structure. But its mechanical performances are constrained by the external shape if the unit cells are directly filled in the design domain, and the traditional topology optimization methods are difficult to give the explicitly mechanical guidance for the distribution of internal unit cells. In this paper, a novel design and optimization method of variable-density lattice structure is proposed in order to simultaneously optimize the external shape and the internal unit cells. First of all, the envelope model of any given structure should be established, and the load paths need to be visualized by the theory of load path. Then, the design criteria of external shape are established based on the principle of smoother load paths in the structure. An index of load flow capacity is defined to indicate the load paths density and to control the density distribution of unit cells, and a detailed optimization strategy is given. Finally, three examples of a cantilever plate, an L-shaped bracket and a classical three-point bending beam are used to verify the method. The results show that the models designed by the proposed method have better mechanical performances, lower material usage and less printing time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call