Abstract

A laser light scanning device consisting of an electronically driven mechanically resonant torsional spring-mirror system was developed for display applications. The original design suffers fatigue failure due to the repeated rotation of the torsional spring. The torsional spring design is investigated and analyzed to attain the lowest possible stress level while maintaining a constant resonant frequency. The finite element analysis model of the torsional spring was created and the stress was minimized by changing the geometrical parameters of the spring. Spring geometric optimization resulted in a maximum stress of 0.632 GPa, that is 12% reduction in stress from the original design, which should give an extended life span of 1 month for the intended application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.