Abstract
In the scope of a computational experiment, high-contrast gratings (HCG) formed on a silicon-on-insulator (SOI) platform within vertical-cavity surface-emitting lasers (VCSELs) were studied for multispectral laser sources. A simulation model for spectral characteristics calculation is proposed, which includes two heterogeneously integrated parts of the VCSEL: 1) the lower output mirror based on a HCG grating in the silicon layer of the SOI surrounded by air cavities to enhance the contrast of the HCG; 2) the semiconductor VCSEL structure with an air aperture for current and optical confinement. Comparative analysis results of the spectral characteristics of VCSEL-SOI structures for zeroth, first, and second-order modes, which can be excited in the air aperture of the VCSEL, are presented. It is demonstrated that the HCG, acting as one of the cavity mirrors, effectively discriminates the VCSEL higher-order modes. An algorithm for calculating HCG parameters that ensure the maximum reflectivity at a fixed thickness of the silicon layer of the SOI is developed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have