Abstract
A neural network model was coupled with genetic algorithm to find an optimal catalyst for elimination of volatile organic compounds (VOCs). The model was based on simultaneous investigation of catalyst formulation, preparation condition, and loaded metal atomic descriptors as representative of each metal, which enables us to evaluate catalyst composition with much fewer experimental data. We have investigated oxides of first transition metal series (V, Cr, Mn, Fe, Co, Ni, Cu and Zn) as a promoter for Ag-ZSM-5 catalyst. Three optimum catalysts, Fe–Ag-ZSM-5, Ni–Ag-ZSM-5, and V–Ag-ZSM-5 were found to have more catalytic activity for VOC (ethyl acetate) oxidation than Ag-ZSM-5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.