Abstract

AbstractDistributed power generation and cogeneration is an attractive way toward a more rational conversion of fuel and biofuel. The fuel cell‐gas turbine hybrid cycles are emerging as the most promising candidates to achieve distributed generation with comparable or higher efficiency than large‐scale power plants. The present contribution is devoted to the design and optimization of an innovative solid oxide fuel cell–gas turbine hybrid cycle for distributed generation at small power scale, typical of residential building applications. A 5 kW planar SOFC module, operating at atmospheric pressure, is integrated with a micro gas turbine unit, including two radial turbines and one radial compressor, based on an inverted Brayton cycle. A thermodynamic optimization approach, coupled with system energy integration, is applied to evaluate several design options. The optimization results indicate the existence of optimal designs achieving exergy efficiency higher than 65%. Sensitivity analyses on the more influential parameters are carried out. The heat exchanger network design is performed for an optimal configuration and a complete system layout is proposed. An example of hybrid system integration in a common residential building is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.