Abstract

This work presents the design and characterization of an optimized attenuated total reflection (ATR) microfluidic cell to assess intrinsic kinetic parameters of reactions at the liquid/solid interface under chemical control. A theoretical and computational investigation of convection, diffusion, and adsorption is presented. Transport dynamics in transient-flow experiments is characterized by a convective and diffusive mass transport of the solution species to the surface of the ATR crystal. Criteria to determine the mass transport limitations of the adsorption process are presented as a function of the Damköhler and Biot numbers. The CO adsorption on a thin film of platinum is studied in order to validate the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.