Abstract
The manufacture, maintenance and inspection of a ship involve a series of works on the ship shell plate, which were always seen as harmful for human operators and time-consuming work. The shipping industry is looking to replace manual work with automation equipment. A magnetic climbing robot that can omnidirectionally move on ship shell plate was presented in this paper. This article summarized the mechanical structure, control system, kinematic model, and autonomy of robot. The mechanical structure of the robot was inspired by bionics and adopted a wheel-leg hybrid locomotion system. In the control system of this robot, industrial control computer (IPC) was adopted as the core controller and brushless direct current servomotor was chosen as the actuating station. Finally, the motion analysis of the designed robot was performed. The results of the analysis show that the magnetic climbing robot adapted to the ship curved shell plate and crossed obstacles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.