Abstract

This paper presents the design and manufacturing of a pin on disk tribometer aimed at performing friction and wear testing as accurate as a professional tribometer at a lower cost. Since friction is an important part of our lives and its application varies greatly in size, environment and other factors, testing can be expensive. Tribometers are instruments where these conditions can be simulated experimentally. They are manufactured by various companies abroad and are imported to Turkey. For this reason, the cost of these instruments is very high. The design of the proposed tribometer prioritizes portability and low cost of manufacturing. The manufacturing process of the various parts are discussed in detail. The tribometer was manufactured in the ATILIM University manufacturing laboratories within a tight budget using CNC machining. The instrument has the full capability to adjust the load, testing radius, motor speed, and the duration of the test before starting the experiments. To handle the electronics and data gathering within the instrument, Arduino boards and software are utilized. Real-time data streaming is made possible for data analysis tasks both during and after the experiments. The paper also provides the results of experiments that are obtained from the newly developed tribometer and comparisons with a mass produced, professional tribometer. The experiments are conducted with the same type of samples and with the same parameters. The proposed tribometer provides researchers with easily accessible friction data that is within close range to what they would get from a professional tribometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.