Abstract
Solid-lipid nanoparticles (SLNs) are an interesting nanoparticulate delivery system. The present work was carried out with the aim to develop a prolonged release solid-lipid nanoparticulate system for the drug using aceclofenac. Aceclofenac-loaded solid-lipid nanoparticles (ACSLNs) was prepared by hot high pressure homogenization technique. Tripalmitin was used as the lipid core. Surfactants (Poloxamer 188, Tween 80, and soya lecithin) and co-surfactant (sodium tauro glycholate) were used in the formulations. The prepared ACSLN formulations were characterized for encapsulation efficiency (EE), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and x-ray diffraction (XRD). From these studies, mean particle diameter of the formulation prepared with combination of surfactants (Poloxmer 188 and Tween 80) was about 200 nm with spherical morphology and amorphous nature. Higher EE was obtained with SLNs prepared using combination of soya lecithin and poloxmer 188. The organization and distribution of the ingredients in the nanoparticulate system were studied by differential scanning calorimetry (DSC) and the results showed that the drug is incorporated into the solid matrix. The prepared formulations demonstrated favorable in vitro prolonged release characteristics. Experimental in vitro release data were substituted in available mathematical models to establish the release kinetics of ACSLNs and it was found to follow first-order kinetics and Higuchi diffusion mechanism. Our results suggest that these SLN formulations could constitute a promising approach for the drug delivery of aceclofenac.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.