Abstract

Incorporation of sunscreens into lipid carriers with an increased sun protection factor (SPF) has not yet been fully accomplished. In the present paper, the effectiveness of a sunscreen mixture, incorporated into the novel topical delivery systems, i.e. solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), used as ultraviolet (UV) protector enhancers with a distinctly higher loading capacity has been developed and evaluated. SLN and NLC were produced by hot high pressure homogenization technique in lab scale production. Size distribution and storage stability of formulations were investigated by laser diffractometry and photon correlation spectroscopy. Nanoparticles were characterized by their melting and recrystallization behaviour recorded by differential scanning calorimetry. Lipid nanoparticles produced with a solid matrix (SLN and NLC) were established as a UV protection system. The loading capacities for molecular sunscreens reported before now were in the range of 10-15%. It was possible to load NLC with up to 70% with molecular sunscreen, which is appropriate to obtain high SPFs with this novel UV protection system. The developed formulations provide a beneficial alternative to conventional sunscreen formulations. The UV protective efficacy of the lipid particles varied with the nature of lipid and UV wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call