Abstract

This paper presents a digital decimation filter based on a third-order four-bit Sigma-Delta modulator. The digital decimation filter is an important part of the Sigma-Delta ADC and is designed to make the Sigma-Delta ADC (Analog-to-Digital Converter) meets the requirements of Signal-to-Noise Ratio (SNR) not less than 120 dB and Equivalent Number of Bits (ENOB) not less than 20 bits. It adopts a three-stages cascaded structure including a Cascaded Integrator Comb (CIC) decimation filter, a Finite Impulse Response (FIR) compensation filter, and a half-band (HB) filter. This structure effectively reduces about 13% multiplier cells and memory cells. The coefficient symmetry technique and CSD (Canonic Signed Digit) coding technique are used to optimize the parameters of the filter, which further reduces the computational complexity. After optimization, the circuit area is reduced by about 15%, and the logic resources are decreased by about 23%. The Verilog hardware description language is used to describe the behavior of the digital decimation filter, and the simulation is carried out based on the VCS (Verilog Compile Simulator) platform. At the same time, the prototype verification is implemented on the Xilinx Artix-7 series FPGA, and the ADC achieves 113 dB SNR and 18.5 bits ENOB. Finally, the Sigma-Delta ADC is fabricated on SMIC 0.18 μm CMOS process with the layout area of 714.8 μm × 628.4 μm and the power consumption of 11.2 mW. The more tests for the fabricated prototypes will be performed in the future to verify that the Sigma-Delta ADC complies with the design specifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call