Abstract

In this work, a fractional-order controller (FOC) is designed in a discrete domain using delta operator parameterization. FOC gets rationally approximated using continued fraction expansion (CFE) in the delta domain. Whenever discretization of any continuous-time system takes place, the choice of sampling time becomes the most critical parameter to get most accurate results. Obtaining a higher sampling rate using conventional shift operator parameterization is not possible and delta operator parameterized discretize time system takes the advantages to circumvent the problem associated with the shift operator parameterization at a high sampling limit. In this work, a first-order plant with delay is considered to be controlled with FOC, and is implemented in discrete delta domain. The plant model is designed using MATLas well as in hardware. The fractional-order controller is tuned in the continuous domain and discretized in delta domain to make the discrete delta FOC. Continuous time fractional order operator (s??) is directly discretized in delta domain to get the overall FOC in discrete domain. The designed controller in implemented using MATLABSimulink and dSPACE board such that dSPACEboard acts as the hardware implemented FOC. The step response characteristics of the closed-loop system using delta domain FOC resembles to that of the results obtained by continuous time controller. It proves that at a high sampling rate, the continuous-time result and discrete-time result are obtained hand to hand rather than the two individual cases. Therefore, the analysis and design of FOC parameterized with delta operator opens up a new area in the design and implementation of discrete FOC, which unifies both continuous and discrete-time results. The discrete model performance characteristics are evaluated in software simulation using MATLAB, and results are validated through the hardware implementation using dSPACE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call