Abstract

ObjectiveWe developed an in-house bioinformatics pipeline to improve the detection of respiratory pathogens in metagenomic sequencing data. This pipeline addresses the need for short-time analysis, high accuracy, scalability, and reproducibility in a high-performance computing environment.ResultsWe evaluated our pipeline using ninety synthetic metagenomes designed to simulate nasopharyngeal swab samples. The pipeline successfully identified 177 out of 204 respiratory pathogens present in the compositions, with an average processing time of approximately 4 min per sample (processing 1 million paired-end reads of 150 base pairs). For the estimation of all the 470 taxa included in the compositions, the pipeline demonstrated high accuracy, identifying 420 and achieving a correlation of 0.9 between their actual and predicted relative abundances. Among the identified taxa, 27 were significantly underestimated or overestimated, including only three clinically relevant pathogens. We also validated the pipeline by applying it to a clinical dataset from a study on metagenomic pathogen characterization in patients with acute respiratory infections and successfully identified all pathogens responsible for the diagnosed infections. These findings underscore the pipeline’s effectiveness in pathogen detection and highlight its potential utility in respiratory pathogen surveillance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.