Abstract

Recent studies in electro-aerodynamic (EAD) propulsion have stimulated the need for lightweight power converters providing outputs at tens of kilovolts and hundreds of watts [1] [2]. This paper demonstrates a design of a lightweight high-voltage converter operating from a 160–200 V dc input and providing dc output of up to 600 W at 40 kV. It operates at around 500 kHz and achieves a specific power of 1.2 kW/kg. This is considerably lighter than comparable industrial and academic designs at this power level. High voltage converters generally comprise an inverter, a step-up transformer and a rectifier, with the large needed voltage gain distributed among these stages. Several means of realizing these stages are compared in terms of weight. The weight of the converter is minimized by properly selecting and optimizing the design and the voltage gain of each stage within the constraints of device limitations and losses. A prototype circuit is developed based on this approach and used to drive an EAD-propulsion system for an unmanned aerial vehicle (UAV). In addition to addressing the power conversion needs for EAD, this research can potentially benefit the development of lightweight high-voltage converters in many other applications where weight and size are important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call