Abstract

This paper presents the design and the implementation of a fully monolithic coupled-oscillator array, operating at 6 GHz with close to zero coupling phase, in 0.25 μm BICMOS SiGe process. This array is made of four LC-NMOS differential VCOs coupled through a resistor. The single LC-NMOS VCO structure is designed and optimized in terms of phase noise with a graphical optimization approach while satisfying design constraints. At 2.5 V power supply voltage, and a power dissipation of only 125 mW, the coupled oscillators array features a simulated phase noise of -127.3 dBc/Hz at 1 MHz frequency offset from a 6 GHz carrier, giving a simulated phase progression that was continuously variable over the range -64° < Δphi <64 ° and -116° < Δphi < 116°. This constant phase progression can be established by slightly detuning the peripheral array elements, while maintaining mutual synchronization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call