Abstract

In this paper, we present the mechanical design, control algorithm, and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis. The orthosis implements a spring in parallel with the knee joint during the stance phase of the gait and allows free rotation during the swing phase. The design is inspired by the moment-angle analysis of the knee joint revealing that the knee function approximates that of a linear torsional spring in the stance phase of the gait. Our orthosis aims to restore the natural function of a knee that is impaired by injury, stroke, post-polio, multiple sclerosis, spinal cord injury, patellofemoral pain syndrome, osteoarthritis, and others. Compared with state-of-the-art stance control orthoses, which rigidly lock the knee during the stance phase, the described orthosis intends to provide the natural shock absorption function of the knee in order to reduce compensatory movements both in the affected and unaffected limbs. Preliminary testing on three unimpaired subjects showed that compliant support of the knee provided by the orthosis explained here results in higher gait speed as well as more natural kinematic profiles for the lower extremities when compared with rigid support of the knee provided by an advanced commercial stance control orthosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.