Abstract

Background:There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg.Objectives:The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living.Study design:Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis.Methods:Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire.Results:The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p = .001), paretic limb health (p = .04), sounds (p = .02), and well-being (p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living.Conclusion:The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies.Clinical relevanceThis study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled knee flexion during weight bearing and dynamic swing control, resulting in significant improvements in perceived orthotic mobility and safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.