Abstract

The optimization of GaAs Schottky barrier mixer diodes for use in heterodyne receivers in the frequency range from 1-3 THz is investigated. The principal design rules are: (1) the substrate doping must be as high as possible to minimize series resistance; (2) the diode cutoff frequency must be increased as much as possible, which requires a small anode diameter and a higher epilayer doping density than has previously been used; and (3) the diode's RF impedance must be made to match the impedance of the corner cube antenna, which requires a low junction capacitance. To achieve these goals, a nominal epilayer doping density of 5*10/sup 17/ cm/sup -3/, an anode diameter of 0.5 mu m, and the most highly doped substrate available (4.5*10/sup 18/ cm/sup -3/) were used. The diodes were fabricated with UV lithography and reactive ion etching. The resulting figure-of-merit cutoff frequency (10.6 THz) and zero-bias junction capacitance (0.4-0.5 fF) are both state of the art. The diodes have been RF-tested at 1.5 THz and yielded significant improvements in receiver sensitivity and reduced LO (local oscillator) power requirements. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.