Abstract

This study investigated the effects of micro- and nanostructures on the adhesion strength between copper and an encapsulating mold compound (EMC). The shape of the microgrooves was designed based on fracture mechanics theory, and the effect of laser-induced periodic structure surface (LIPSS) formation on the microgroove was investigated using numerical simulations. The designed surface profiles were fabricated using femtosecond laser treatments, and the adhesion strength between copper and the EMC was evaluated. The results show that deep microgrooves improved the adhesion strength owing to the anchor effect. However, the aspect ratio between the pitch and depth of the microgroove had a limitation in enhancing the adhesion strength. The formation of LIPSSs on the mountaintop of the microgroove was very effective; however, an LIPSS on the valley of the microgroove was ineffective. Numerical analyses revealed that LIPSSs suppressed the shear deformation of the EMC and worked as resistance to interface delamination. Based on the findings obtained in this study, combining micro- and nano-scale surface structure formation with femtosecond laser treatments is an effective and eco-friendly method for improving adhesion strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.