Abstract

As a promising substrate, cellulose fibers were widely investigated in supercapacitors for their low cost and sustainability. However, the low performance created great barrier for the future applications of the cellulosic paper-based supercapacitors. The performance of paper-based supercapaciors may be improved by the addition of redox active molecule. As a plant derived redox active molecule, Alizarin red S was used to improve the performance of PEDOT paper-based electrode via a simple post-treatment process. By combination of the treated paper electrode and the redox electrolyte, a symmetric paper-based supercapacitor with a superior performance of 2191.3 m F/cm2 (at 5 mA/cm2) and 4.87 mW h/cm3 (at power density of 36 mW/cm3) were fabricated. The charge and mass transfer mechanisms of paper electrode were detailed discussed. The simple and efficient strategy developed in this work opens up new doors for the development of other cellulose related high performance energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.