Abstract

The diffraction efficiency of a gold transmission phase grating is simulated as a function of the depth of grooves and the duty cycle on the basis of the scalar diffraction theories. It is shown that the +1 order diffraction efficiency of a transmission phase grating with appropriate groove depth and duty cycle can beup to 21.9% of the incident light,whereas it is no greater than 10% for a conventional amplitude-mode transmission grating. Transmission gratings with area of 20mm×5mm,period of 1μm,duty cycle of 0.55 and 200nm thick gold bars supported by a membrane of 300nm thick polyimide have been fabricated by combining holographic lithography and electroplating. Its diffraction efficiency has been measured in national synchrotron radiation laboratory,and the maximum efficiency in +1 order is about 16% at λ=7.425nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.