Abstract

The present study introduces cyclotriphosphazene compounds substituted by dioxyphenylcoumarin as a photodiode application. Firstly, 7,8-dihydroxy-3-(3-methylphenyl)coumarin (1b) has been obtained by conventional as well as microwave assisted methods. Novel optoelectronic device characteristics for both mono and disubstituted dioxyphenylcoumarin bearing cyclotriphosphazene compounds (HCP-2 and HCP-4) have been synthesized from the reactions of cyclotriphosphazene containing dioxybiphenyl (HCP-1 and HCP-3) with compound 1b, respectively. The structures of compounds HCP 1–4 were identified by using elemental analysis, 1H, 13C-APT, 31P NMR and 2D HETCOR NMR and FT-IR spectroscopy methods. The Al/HCP-2/p-Si/Al and Al/HCP-4/-p-Si/Al photodiodes properties have been investigated from current-voltage (I−V) and capacitance-voltage (C−V) measurements. The electrical parameters of the prepared diodes such as ideality factor n and series resistance Rs were investigated in dark and at room temperature from (I−V) curve and Nord's method. As can be seen, the Al/HCP-2/p-Si/Al diode of high rectification ratio RR and with ideality factor greater than unity. The influence of light illuminations on the diode shows that the device can be used as photodiode with good efficiency. The barrier height ϕb and series resistance Rs have been calculated from the capacitance-voltage (C−V)and conductance-voltage (G−V) measurements under various applied frequencies from 10kHz to 1MHz. the high difference in the results of barrier height obtained from I-V and C-V calculations confirm the influence of series resistance and localized states on transport of charge carriers and the photodiode performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.