Abstract

Aluminum alloy honeycomb structures were designed based on origami technology, and the specimens were fabricated by a new fabrication technology (i.e. a press and folding process). In folding process, a new folding device was successfully developed to achieve automatic fabrication of honeycomb structure. To prove the practicability of developed device, the honeycomb cores with claws were fabricated by this device, which were used to compare the mechanical properties with that bonded by common adhesive. The deformation behaviors and mechanical properties of honeycomb structures were investigated by the flatwise compressive test and three-point bending test. The load–displacement curve obtained at the room temperature showed that the load increased to a peak value and then tended rapidly to a constant. Besides, the deformation process approximately categorized into three zones, namely linear-elastic zone, plastic-plateau zone, and densification zone. The experimental results suggested that regardless of specimen type, the bending stiffness and compressive strengths were approximately 0.32 KN·m2and 0.39 MPa, respectively; revealing the bonded method by aluminum claws did not dramatically affect the mechanical properties of honeycomb structure. Moreover, the elastic deformation of honeycomb structure was numerically studied by the finite element analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.