Abstract

This article presents results from an experimental study, investigating the effects of core thickness on the mechanical properties of composite sandwich structures with polypropylene(PP)-based honeycomb core and glass fiber-reinforced polymer (GFRP) face-sheets fabricated by hand lay-up technique. Epoxy matrix and non-crimp glass fibers were used for the production of GFRP laminates. Flatwise compression (FC), edgewise compression (EC), three-point bending (3PB) and double cantilever beam (DCB) tests were performed to evaluate the mechanical behavior of the composite sandwich structures (CSSs). Based on the FC tests, an increase in the compressive modulus and strength was observed with an increase in the core thickness. For EC tests, peak loads up to crush of the sandwich panel is discussed using core thickness. According to the 3PB tests, a decrease in core shear stress and facesheet bending stress was observed as the core thickness increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.