Abstract

A new type of resonant pressure sensor is presented which is realized by combination of a double-ended tuning fork (DETF) quartz resonator and a silicon diaphragm. To examine the feasibility and investigate the performance of this innovation, theoretical analysis and finite elements method are employed to optimize the structure parameters. Micromachining technology are involved in the fabrication of the silicon diaphragm and the DETF quartz resonator, which are fabricated separately and bounded together afterwards. Performances of the sensor prototypes are experimentally investigated. Preliminary testing results demonstrate that the sensor features a high sensitivity of approximately 452.5 Hz/kPa in the operating range of 0---6 kPa at room temperature, with a non-linearity <0.035 % FS and a hysteresis of 0.055 % FS. In addition, the maximum zero-drift is about 0.5 Hz/h which reveals favorable frequency stability. Thus, the feasibility of this scheme is verified. Due to the excellent performances such as high accuracy, high sensitivity, low cost and simple fabrication, this novel resonant sensor provides a commendable solution for low pressure measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call