Abstract
Using simple and reliable microfabrication techniques, this study develops a capillary electrophoresis (CE) microchip with 3-dimensional-structured (3D-structured) contactless capacitive detector electrodes mounted parallel to the separation channel. The offchannel electrodes are deposited by Au sputtering and patterned using a standard 'lift-off’’ process. A vacuum fusion bonding process is employed to seal the lower substrate containing the microchannels and electrodes to an upper glass cover plate. The variation in the capacitance between the electrodes in the side channels is measured as different samples and ions pass through the detection region of the CE separation channel. Samples of Rhodamine B and a commercial sports drink are mixed in different buffer solutions and successfully separated and detected using the developed device. The 3D-structured contactless capacitive-type detection device has microscale dimensions and provides a valuable contribution to the realization of the lab-on-a-chip concept.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.