Abstract

Since the knotters on the Chinese rectangular balers are imported from outside of the country, Chinese knotters with independent intellectual property rights is far away from being closed. In order to harvest a large quantity of straw in a short period on the small-scale lands of China, basic requirements on the knotters are summarized. Mathematical model of the knotter is also determined uniquely. Furthermore, the ϕ-type-knots knotter equipped on the Chinese square baler to form the ϕ type knots is designed. Knotting rate experiments of the ϕ-type-knots knotter on the test bench and in the wheat/maize straws covered fields are carried out to check the knotting performances of the knotter. The parameters of the formed knots are also tested. The experiments results show that the knotting rate of the ϕ-type-knots knotter reaches 100.0% on the test bench without straws, while reaches 99.6% in the wheat straws covered field and 100.0% in the maize straws covered field. The average maximum force in the knotting process is 194.7 N in the lab experiment. The length out of the knots formed in lab is 15.9%–20.6% lower than the knots formed in the field experiment. The breaking force of the knots formed in the field is 115.9%–167.2% higher than the knots formed in lab due to the higher preload and interactions with the compacted bales. Highly relevant relationships exist between the breaking force of the formed knots and the maximum force in the forming process of the knots in the lab experiment. The designed knotter breaks out the embarrassing situation of the domestic knotters which don’t have independent intellectual property rights, and promotes the development of Chinese knotter technology, and the mathematical model is helpful for designing new type of knotters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.