Abstract

The inlet with scavenge duct is an important part of turboprop aircraft engine. This type of inlet normally has a complex shape, of which the design is challenging and directly affects the flow field quality of the engine entrance and thus the engine performance. In this paper, the parametric design method of a turboprop aircraft inlet with scavenge duct is established by extracting and controlling the transition law of the critical characteristic parameters. The inlet’s performance and internal flow characteristics are examined by wind-tunnel experiment and numerical simulation. The results indicate that a flow tendency of winding up on both sides is formed due to the induction of the inlet profile, as well as a vortex pair on the back side of the power output shaft. The vortex pair dominates the pressure distortion index on the Aerodynamic Interface Plane (AIP). In addition, with the increase of freestream angle of attack, the total-pressure recovery coefficient of the inlet increases gradually while the total pressure distortion index decreases slightly. On the basis of the experimental results under different working conditions, the parametric design method proposed in this paper is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.