Abstract
Submerged floating tunnels (SFTs), also known as the Archimedes Bridge, are new transportation structures designed for crossing deep waters. Compared with cross-sea bridges and subsea tunnels, SFTs offer superior environmental adaptability, reduced construction costs, and an enhanced spanning capacity, highlighting their significant development potential and research value. This paper introduces a new type of SFT scale model for hydrodynamic experiments, adhering to the criteria for geometric similarity, motion similarity, and dynamic similarity principles, including the Froude and Cauchy similarity principles. This model enables the accurate simulation of the elastic deformation of the tunnel body and complex hydrodynamic phenomena, such as fluid–structure interactions and vortex–induced vibrations. Moreover, this paper details the design methodology, fabrication process, and method for similarity evaluation, covering the mass, deflection under load, natural frequency in air, and the natural frequency of the various underwater motion freedoms of the model. The results of our experiments and numerical simulations demonstrate a close alignment, proving the reliability of the new SFT scale model. The frequency distribution observed in the white noise wave tests indicates that the SFT equipped with inclined mooring cables experiences a coupled interaction between horizontal motion, vertical motion, and rotation. Furthermore, the design methodology of this model can be applied to other types of SFTs, potentially advancing technical progress in scale modeling of SFTs and enhancing the depth of SFT research through hydrodynamic experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.