Abstract

Neisseria meningitis remains a leading cause of sepsis and meningitis, and vaccines are required to prevent infections by this important human pathogen. Factor H binding protein (fHbp) is a key antigen that elicits protective immunity against the meningococcus and recruits the host complement regulator, fH. As the high affinity interaction between fHbp and fH could impair immune responses, we sought to identify non-functional fHbps that could act as effective immunogens. This was achieved by alanine substitution of fHbps from all three variant groups (V1, V2 and V3 fHbp) of the protein; while some residues affected fH binding in each variant group, the distribution of key amino underlying the interaction with fH differed between the V1, V2 and V3 proteins. The atomic structure of V3 fHbp in complex with fH and of the C-terminal barrel of V2 fHbp provide explanations to the differences in the precise nature of their interactions with fH, and the instability of the V2 protein. To develop transgenic models to assess the efficacy of non-functional fHbps, we determined the structural basis of the low level of interaction between fHbp and murine fH; in addition to changes in amino acids in the fHbp binding site, murine fH has a distinct conformation compared with the human protein that would sterically inhibit binding to fHbp. Non-functional V1 fHbps were further characterised by binding and structural studies, and shown in non-transgenic and transgenic mice (expressing chimeric fH that binds fHbp and precisely regulates complement system) to retain their immunogenicity. Our findings provide a catalogue of non-functional fHbps from all variant groups that can be included in new generation meningococcal vaccines, and establish proof-in-principle for clinical studies to compare their efficacy with wild-type fHbps.

Highlights

  • Neisseria meningitidis is a human specific pathogen that is a leading cause of bacteraemia and sepsis in children and young adults [1]

  • Factor H binding protein is an important meningococcal immunogen which is able to bind the human complement regulator factor H at high affinity; this interaction could impair the efficacy of fHbp-based vaccines

  • We demonstrate that impaired binding of the murine fH to fHbp is not solely due to amino acid differences at the binding site; structural analyses revealed a different orientation of complement control protein domains (CCP) 6 with 7 in the human and murine molecules that would sterically inhibit interactions with mfH

Read more

Summary

Introduction

Neisseria meningitidis is a human specific pathogen that is a leading cause of bacteraemia and sepsis in children and young adults [1]. Considerable progress has been made in the development of conjugate capsular polysaccharide vaccines against certain serogroups of N. meningitidis (namely A, C, Y and W135), while outer membrane vesicle (OMV) vaccines have been successfully employed to combat epidemic disease caused by a single clones of the bacterium [5]. These strategies cannot be employed to prevent endemic serogroup B infection, which is the commonest form of disease in countries across Europe and North America [1,6]. The phenotypic diversity of serogroup B strains limits the potential efficacy of OMV vaccines [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.