Abstract

ABSTRACTThe meningococcal 4CMenB vaccine (Bexsero; Novartis) contains four antigens that can elicit serum bactericidal activity, one of which is factor H (FH)-binding protein (FHbp). FHbp specifically binds human complement FH. When humans are immunized, FHbp is expected to form a complex with FH, which could affect immunogenicity and safety. Wild-type mice (whose FH does not bind to FHbp) and human FH transgenic mice were immunized with three doses of 4CMenB, and their responses were compared. There were no significant differences between the serum bactericidal responses of transgenic and wild-type mice to strains with all of the antigens mismatched for 4CMenB except PorA or NadA. In contrast, against a strain mismatched for all of the antigens except FHbp, the transgenic mice had 15-fold weaker serum bactericidal antibody responses (P = 0.0006). Binding of FH downregulates complement. One explanation for the lower anti-FHbp serum bactericidal activity in the transgenic mice is that their postimmunization serum samples enhanced the binding of FH to FHbp, whereas the serum samples from the wild-type mice inhibited FH binding. Control antiserum from transgenic mice immunized with a low-FH-binding mutant FHbp (R41S) vaccine inhibited FH binding. Two 4CMenB-vaccinated transgenic mice developed serum IgM autoantibodies to human FH. Thus, human FH impairs protective serum anti-FHbp antibody responses, in part by skewing the antibody repertoire to FHbp epitopes outside the FH binding site. FHbp vaccines that bind FH may elicit FH autoantibodies. Mutant FHbp antigens with low FH binding could improve protection and, potentially, vaccine safety in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call