Abstract

With the demand for sophisticated techniques to easily prevent the deflection of needles, robotic CT (computed tomography)-guided puncture with an ultrafine needle is being investigated. Quantification of deflection is essential for accurate puncture with ultrafine needles. Research on the quantification of deflection caused by tissue reaction forces to which the beveled surface of the needle tip is in progress, and this method has been applied for deflection reduction and needle steering within the tissue. However, when the needle tip passes through a tissue boundary, the needle deflects regardless of the direction of the beveled surface. Although several methods have been proposed to reduce the deflection caused by the boundary surface, no curve puncture method has been constructed using the deflection. This work aimed to construct a refraction model that can back-calculate the curved path from the body surface to the target. Assumptions of the refraction model were made based on the results of ex vivo examination, and the model was validated through in vivo examination. A refraction model in which the refraction angle is linearly proportional to the needle penetration angle relative to the boundary was hypothesized. Validation test revealed that the correlation coefficient exceeded 0.9, which was similar to that of the model and suggested the biological adaptability of the proposed model. A curve puncture method using this refraction model will be developed in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.