Abstract

Molecular Quantum-dot Cellular Automata is the most promising and challenging technology nowadays for its high operating frequency, extremely high device density and non-cryogenic working temperature. In this paper, we report a First Principle approach based on analytical model of 3-dot Bio Molecular Quantum-dot Cellular Automata. The device is 19.62Å long and this bio molecular Quantum dot Cell has been made with two Adenine Nucleotide bio-molecules along with one Carbazole and one Thiol group. This whole molecular structure is supported onto Gold substrate. In this paper, two Adenine Nucleotides act as two quantum dots and Carbazole acts as another dot. These 3-Quantum-dots are mounted in a tree like structure supported with Thiol group. This model has been demonstrated with Extended Hückel Theory based semi-empirical method. The quantum ballistic transmission and HOMO-LUMO plot support the polarization state change. This state changing ability has been observed for this molecular device. Therefore, this property has been investigated and reported in this paper. HOMO-LUMO plot shows the two logic states along with null state for this 3-dots system. This phenomenon illustrates how the charge transfers take place. Two polarization states along with one additional null state have been obtained for this bio molecular nano device. This molecular device has been operated with 1000THz frequency. This nanoscale design approach will initiate one step towards the modeling of high frequency bio molecular Quantum dot Cell at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.